December 20, 2024
A recent article “Masitinib analogs with the N-methyl piperazine group replaced – a new hope

A recent article “Masitinib analogs with the N-methyl piperazine group replaced – a new hope for the development of anti-COVID-19 drugs” published in the Journal of King Saud University – Science from a collaborative study between scientists in India, Saudi Arabia and South Korea aimed at discovering potential drugs to SARS-CoV-2 infection has led to new findings that could pave way for clinical trials to cure the Coronavirus disease. The article has been co-authored by Dr. Arun Bahadur Gurung (North-Eastern Hill University, Shillong, Meghalaya, India), Professor Joongku Lee (Chungnam National University, Daejeon, South Korea), Dr. Hiba Sami (Aligarh Muslim University, Aligarh, India) and three others, Dr. Mohammad Ajmal Ali, Dr. Reem M. Aljowaie, Dr. Saeedah M. Almutairi (King Saud University, Riyadh, Saudi Arabia).

The research has used a computational approach to embark on a scientific experimentation of drug development for the disease. Masitinib is an orally acceptable tyrosine kinase inhibitor that is currently investigated under clinical trials against cancer, asthma, Alzheimer’s disease, multiple sclerosis and amyotrophic lateral sclerosis.

The research has used a computational approach to embark on a scientific experimentation of drug development for the disease. Masitinib is an orally acceptable tyrosine kinase inhibitor that is currently investigated under clinical trials against cancer, asthma, Alzheimer’s disease, multiple sclerosis and amyotrophic lateral sclerosis. A recent study confirmed the anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) activity of masitinib through inhibition of the main protease (Mpro) enzyme, an important pharmacological drug target to block the replication of the coronavirus. However, due to the adverse effects and lower potency of the drug, there are opportunities to design better analogues of masitinib. Masitinib analogues with the N-methylpiperazine group replaced is a promising drug candidate against coronavirus, suggest the findings. Dr. Mohammad Ajmal Ali, originally from Pakur in the Indian state of Jharkhand, spoke with Times of NRIs mentioned that the finding is novel and exciting as the lead molecules also demonstrated broad-spectrum antiviral activities against coronavirus. Dr. Ali, an alumnus of Tilka Manjhi Bhagalpur University, Bihar, is currently Associate Professor at Saudi Arabia’s King Saud University and associated in the Genetics and Molecular Biotechnology Laboratory at its College of Science in the Department of Botany and Microbiology. Dr. Ali’s research program encompasses next generation sequencing, computational chemistry, bioprospecting and bionanotechnology, and has authored/co-authored eight books and over 210 research articles in more than 52 journals of international repute. Having more than a decade of experience in academics and research in cyto-genetics, computational chemistry, he also worked at Korea Research Institute of Biosciences and Biotechnology, Daejeon, South Korea. He opines that “the discovery of novel drug molecules is crucial as still there are no approved antiviral drugs for the treatment of human CoV infection, therefore the scientists in this study were compelled to use computational methods to address the problem and build on effective therapeutics of CoV infection.

Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J.R., Hilgenfeld, R., 2003. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science (80-) 300, 1763–1767. Fig. 7. The plot of number of hydrogen bonds versus time (A) intramolecular hydrogen bonds (B) intermolecular hydrogen bonds between Mpro and masitinib analogues. A.B. Gurung, M.A. Ali, R.M. Aljowaie et al. Journal of King Saud University – Science 35 (2023) 102397 11 Berendsen, H.J.C., van Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R., 1984. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690. Darden, T., York, D., Pedersen, L., 1993. Particle mesh Ewald: An N log (N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092. Dubreuil, P., Letard, S., Ciufolini, M., Gros, L., Humbert, M., Castéran, N., Borge, L., Hajem, B., Lermet, A., Sippl, W., et al., 2009. Masitinib (AB1010), a potent and selective tyrosine kinase inhibitor targeting KIT. PLoS One 4, e7258. Folch, J., Petrov, D., Ettcheto, M., Pedros, I., Abad, S., Beas-Zarate, C., Lazarowski, A., Marin, M., Olloquequi, J., Auladell, C., et al., 2015. Masitinib for the treatment of mild to moderate Alzheimer’s disease. Expert Rev. Neurother. 15, 587–596. Gurung, A.B., Ali, M.A., Lee, J., Farah, M.A., Al-Anazi, K.M., 2020. Unravelling lead antiviral phytochemicals for the inhibition of SARS-CoV-2 Mpro enzyme through in silico approach. Life Sci. 117831. Hahn, K.A., Oglivie, G., Rusk, T., Devauchelle, P., Leblanc, A., Legendre, A., Powers, B., Leventhal, P.S., Kinet, J.-P., Palmerini, F., et al., 2008. Masitinib is safe and effective for the treatment of canine mast cell tumors. J. Vet. Intern. Med. 22, 1301–1309. Halgren, T.A., 1996. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17, 490– 519. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<490::AIDJCC1>3.0.CO;2-P. Hess, B., Bekker, H., Berendsen, H.J.C., Fraaije, J.G.E.M., 1997. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472. Hess, B., Kutzner, C., Van Der Spoel, D., Lindahl, E., 2008. GRGMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4, 435–447. https://doi.org/10.1021/ct700301q. Hilgenfeld, R., Peiris, M., 2013. From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses. Antiviral Res. 100, 286–295. Humbert, M., De Blay, F., Garcia, G., Prud’homme, A., Leroyer, C., Magnan, A., Tunonde-Lara, J.-M., Pison, C., Aubier, M., Charpin, D., others, 2009. Masitinib, ac-kit/ PDGF receptor tyrosine kinase inhibitor, improves disease control in severe corticosteroid-dependent asthmatics. Allergy 64, 1194–1201. Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., et al., 2020. Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature 582, 289–293. Kathawala, R.J., Chen, J.-J., Zhang, Y.-K., Wang, Y.-J., Patel, A., Wang, D.-S., Talele, T.T., Ashby, C.R., Chen, Z.-S., 2014a. Masitinib antagonizes ATP-binding cassette subfamily G member 2-mediated multidrug resistance. Int. J. Oncol. 44, 1634– 1642. Kathawala, R.J., Sodani, K., Chen, K., Patel, A., Abuznait, A.H., Anreddy, N., Sun, Y.-L., Kaddoumi, A., Ashby, C.R., Chen, Z.-S., 2014b. Masitinib antagonizes ATPbinding cassette subfamily C member 10–mediated Paclitaxel resistance: a preclinical study. Mol. Cancer Ther. 13, 714–723. Kim, S., Thiessen, P.A., Bolton, E.E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B.A., Wang, J., Yu, B., Zhang, J., Bryant, S.H., 2016. PubChem Substance and Compound databases. Nucleic Acids Res. https://doi.org/ 10.1093/nar/gkv951. Kneller, D.W., Phillips, G., Weiss, K.L., Pant, S., Zhang, Q., O’Neill, H.M., Coates, L., Kovalevsky, A., 2020. Unusual zwitterionic catalytic site of SARS–CoV-2 main protease revealed by neutron crystallography. J. Biol. Chem. 295, 17365–17373. Laskowski, R.A., Swindells, M.B., 2011. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51, 2778–2786. https://doi. org/10.1021/ci200227u. Le Cesne, A., Blay, J.-Y., Bui, B.N., Bouché, O., Adenis, A., Domont, J., Cioffi, A., RayCoquard, I., Lassau, N., Bonvalot, S., et al., 2010. Phase II study of oral masitinib mesilate in imatinib-naive patients with locally advanced or metastatic gastrointestinal stromal tumour (GIST). Eur. J. Cancer 46, 1344–1351. Li, G., De Clercq, E., 2020. Therapeutic options for the 2019 novel coronavirus (2019- nCoV). Nat. Rev. Drug Discov. 19, 149–150. Lipinski, C.A., 2004. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today. Technol. 1, 337–341. https://doi.org/10.1016/j. ddtec.2004.11.007. Mandal, A., Jha, A.K., Hazra, B., 2021. Plant Products as Inhibitors of Coronavirus 3CL Protease. Front. Pharmacol. 12, 167. Mengist, H.M., Dilnessa, T., Jin, T., 2021. Structural basis of potential inhibitors targeting SARS-CoV-2 main protease. Front. Chem. 9. Mora, J.S., Genge, A., Chio, A., Estol, C.J., Chaverri, D., Hernández, M., Mar\’\in, S., Mascias, J., Rodriguez, G.E., Povedano, M., others, 2020. Masitinib as an add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: a randomized clinical trial. Amyotroph. Lateral Scler. Front. Degener. 21, 5–14. Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S., Olson, A.J., 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30, 2785–2791. https://doi.org/10.1002/ jcc.21256. Ottaiano, A., Capozzi, M., De Divitiis, C., De Stefano, A., Botti, G., Avallone, A., Tafuto, S., 2017. Gemcitabine mono-therapy versus gemcitabine plus targeted therapy in advanced pancreatic cancer: a meta-analysis of randomized phase III trials. Acta Oncol. (Madr) 56, 377–383. Papich, M.G., 2016. Masitinib Mesylate, in: Papich, M.G. (Ed.), Saunders Handbook of Veterinary Drugs (Fourth Edition). W.B. Saunders, St. Louis, pp. 476–477. https://doi.org/https://doi.org/10.1016/B978-0-323-24485-5.00355-7. Riva, L., Yuan, S., Yin, X., Martin-Sancho, L., Matsunaga, N., Pache, L., BurgstallerMuehlbacher, S., De Jesus, P.D., Teriete, P., Hull, M.V., et al., 2020. Discovery of SARS-CoV-2 antiviral drugs through large-scale compound repurposing. Nature 586, 113–119. Sander, T., Freyss, J., von Korff, M., Rufener, C., 2015. DataWarrior: an open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model. 55, 460–473. https://doi.org/10.1021/ci500588j. Schüttelkopf, A.W., Van Aalten, D.M.F., 2004. PRODRG: a tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. Sect. D Biol. Crystallogr. 60, 1355–1363. Drayman, N., DeMarco, J.K., Jones, K.A., Azizi, S.-A., Froggatt, H.M., Tan, K., Maltseva, N.I., Chen, S., Nicolaescu, V., Dvorkin, S., others, 2021. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science (80-.). 373, 931–936. Tong, L., 2002. Viral proteases. Chem. Rev. 102, 4609–4626. Ullrich, S., Nitsche, C., 2020. The SARS-CoV-2 main protease as drug target. Bioorganic & Med. Chem. Lett. 127377. Veber, D.F., Johnson, S.R., Cheng, H.-Y., Smith, B.R., Ward, K.W., Kopple, K.D., 2002. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 45, 2615–2623. Vermersch, P., Benrabah, R., Schmidt, N., Zéphir, H., Clavelou, P., Vongsouthi, C., Dubreuil, P., Moussy, A., Hermine, O., 2012. Masitinib treatment in patients with progressive multiple sclerosis: a randomized pilot study. BMC Neurol. 12, 1–9. Wu, C., Liu, Y., Yang, Y., Zhang, P., Zhong, W., Wang, Y., Wang, Q., Xu, Y., Li, M., Li, X., Zheng, M., Chen, L., Li, H., 2020a. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B. Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.- H., Pei, Y.-Y., et al., 2020b. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269. Yang, H., Yang, M., Ding, Y., Liu, Y., Lou, Z., Zhou, Z., Sun, L., Mo, L., Ye, S., Pang, H., et al., 2003. The crystal structures of severe acute respiratory syndrome virus main protease and its complex with an inhibitor. Proc. Natl. Acad. Sci. 100, 13190–13195. Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., Hilgenfeld, R., 2020. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved a-ketoamide inhibitors. Science (80-.). https://doi. org/10.1126/science.abb3405. Zhang, J., Zeng, H., Gu, J., Li, H., Zheng, L., Zou, Q., 2020a. Progress and prospects on vaccine development against SARS-CoV-2. Vaccines 8, 153. Zhou, P., Yang, X.-L., Wang, X.-G., Hu, B., Zhang, L., Zhang, W., Si, H.-R., Zhu, Y., Li, B., Huang, C.-L., others, 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 1–4.


Alif Global School Alif International School Al Yasmin International School Ambassador AMUOBA Bazme Urdu Toastmaster Business BUTMC CBSE Results CGI Consulate General of India Consul General of India Dammam Diplomat Dr. Suhel Ajaz Khan Embassy Excellence Award Fahad Ahmed Khan Suri Gulbarga Welfare Society Haj Hyderabad Iftar party IJFF Independence Day India Indian Ambassador Indian Embassy International Day of Yoga Jeddah K. N. Wasif Madinah Mushaira NEET New Delhi Newsbeat Public Speaking Ramadan Republic Day Riyadh Saudi Arabia Smriti Irani Toastmasters International Union Minister Yara International School Zafar Sareshwala

Leave a Reply

Your email address will not be published. Required fields are marked *